Workshop Practice TA 102

Lec-4 \& 5 :Measurements and Quality in Manufacturing Problems

By Prof.A.Chandrashekhar

EXAMPLE 1

Find the type of fit obtained in the following type:
Size of Hole:

$$
\begin{aligned}
& +0.0 \\
& \quad 29.00^{+0.013} \mathrm{~mm}
\end{aligned}
$$

Size of shaft:
$+0$

$$
29.00^{-0.013} \mathrm{~mm}
$$

Maximum size of hole $=29+0.013$

$$
=29.013 \mathrm{~mm}
$$

Minimum size of hole $=29+0=29 \mathrm{~mm}$
Maximum size of shaft $=29 \mathrm{~mm}$ minimum size of shaft $=29-0.013$

$$
=28.987 \mathrm{~mm}
$$

Max. clearance $=$ Max. size of hole - Min
size of shaft
$=$ 29.013-28.987
$=0.026 \mathrm{~mm}$

Min. clearance $=$ Min size of hole - Max. size of shaft
$=29-29=0 \mathrm{~mm}$
Since, both clearances are greater than or equal to zero, the resulting fit is clearance fit.

PROBLEM 2

Determine the type of fit that can be obtained if the sizes of the hole and shaft are:

Size of Hole:

$$
-0.026
$$

$$
50.00^{-0.065} \mathrm{~mm}
$$

Size of shaft:
-0

$$
50.00^{-0.011} \mathrm{~mm}
$$

Maximum size of shaft $=50 \mathrm{~mm}$ minimum size of shaft $=50-0.011$ $=49.989 \mathrm{~mm}$

Maximum size of hole $=50-0.026$

$$
=49.974 \mathrm{~mm}
$$

Minimum size of hole $=50-0.065=49.935 \mathrm{~mm}$
Max. clearance $=$ Max. size of hole - Min size of shaft
$=49.974-49.989$
$=-0.015 \mathrm{~mm}$

Min. clearance $=$ Min size of hole - Max.
size of shaft
$=49.935-50=-0.065 \mathrm{~mm}$
Since, both clearances are negative, it results in interference fit.

PROBLEM 3

Three blocks A, B and C are to be assembled in a channel of dimension D. except for the tolerances to be assigned to D , all the other basic sizes and tolerances are known.
Determine the tolerance that must be assigned to D if it is essential that the minimum gap E is not less than
0.005 mm . The dimensions of the blocks are as follows:
$\mathrm{A}=0.75 \pm 0.003 \mathrm{~mm} \mathrm{~B}=1.00 \pm 0.005 \mathrm{~mm}$
$\mathrm{C}=1.125 \pm 0.004 \mathrm{~mm}$ and the basic dimension of channel $\mathrm{D}=$ 2.894 mm .

$(0.750+0.003)+(1+0.005)+(1.125+0.004)+(0.005)=(2.894-$ X)
$\mathrm{X}=0.002 \mathrm{~mm}$
$\mathrm{D}=2.894 \pm 0.002 \mathrm{~mm}$

Problem 4

- The nominal size of a part is 30 mm . the standard tolerance selected for this part is 0.010 mm . Express the size of the part using unilateral and Bilateral tolerances.
- $30.00^{+0.010}$ or 30.00^{+0}
$-0 \quad-0.010$
- 30.00 ± 0.010

Problem 5

- The dimensions of three shafts and holes are given in the table. For each assembly, identify the type of fit and compute the allowance (clearance / interference)

SIZE OF HOLE

a) $25.00^{+0.02}$
-0
b) 25.00 ± 0.05
c) 25.00^{+0}
-0.025

SIZE OF SHAFT

$$
\begin{gathered}
25.00^{+0} \\
-0.02
\end{gathered}
$$

25.00 ± 0.05

$$
{ }_{-0} 25.00^{+0.025}
$$

a) \quad Clearance $=+0.06$
b) Transition
c) \quad Interference $=-0.06$

Problem 6

- Find the values of the allowance, hole tolerance and shaft tolerance for the following dimensions of mated parts according to basic hole system.

Hole: 37.50 mm
37.52 mm

Shaft: 37.47 mm
37.45 mm

Sol for Problem 6

- Hole tolerance $=$ high limit - low limit

$$
=37.52-37.50=0.02 \mathrm{~mm}
$$

- Shaft tolerance $=$ high limit - low limit

$$
=37.47-37.45=0.02 \mathrm{~mm}
$$

- Allowance $=$ Low limit of hole - High Limit of shaft

$$
=37.50-37.47=0.03 \mathrm{~mm}
$$

Problem 7

- A 75 mm shaft rotates in a bearing. The tolerance for both shaft and bearing is 0.075 mm and the required allowance is 0.10 mm . Determine the dimensions of the shaft and bearing bore with the basic hole standard.

Sol for Problem 7

- Low limit of the hole $=75 \mathrm{~mm}$
- High limit of the hole $=$ low limit + tolerance

$$
=75+0.075=75.075 \mathrm{~mm}
$$

- High limit of the shaft $=$ low limit of hole - allowance

$$
=75-0.10=74.90 \mathrm{~mm}
$$

- Low limit of the shaft $=$ high limit - tolerance

$$
=75-0.075=74.825 \mathrm{~mm}
$$

Problem 8

- A medium force fit on a 75 mm shaft requires a hole tolerance each equal to 0.225 mm and an average interference of 0.0375 mm . determine the proper hole and shaft dimensions with the basic hole standard.

